
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 51, NO. 12, DECEMBER 2003 2315

State-Space Integral-Equation Method for the
S-Domain Modeling of Planar Circuits

on Semiconducting Substrates
Giuseppe Conciauro, Senior Member, IEEE, Paolo Arcioni, Senior Member, IEEE, and Marco Bressan, Member, IEEE

Abstract—This paper presents a new and very efficient integral
method for the electromagnetic modeling of planar circuits on mul-
tilayered semiconducting substrates. Differently from standard in-
tegral approaches, the method leads to a state-space model of the
circuit. This model directly permits to find the admittance matrix
in the form of a reduced-order pole expansion in the -domain
through standard Krylov sub-space techniques. Three examples
demonstrate the really good performances of the method in terms
of accuracy and rapidity.

Index Terms—Electromagnetic modeling, integral-equation
(IE) methods, method of moments, microwave integrated circuits,

-domain methods, state-space methods.

I. INTRODUCTION

PARTICULAR attention is currently devoted to the devel-
opment of efficient electromagnetic solvers that directly

lead to the mathematical model of passive components or
subsystems through the application of the so-called -domain
methods [1]. The mathematical model is obtained in the form of
pole expansion of some circuit matrix (scattering, impedance,
admittance, ) in the domain of the Laplace variable . Such
models are very useful for representing passive components
or subsystems in the design of complex integrated systems,
carried out in a network-oriented simulation environment. Fur-
thermore, they can be used to determine almost instantaneously
the frequency response with unlimited frequency resolution.

The basic problem encountered in -domain methods
is derived from the necessity of representing a distributed
structure, inherently of infinite order, by a macromodel of
finite and reasonably small order. Among the many possible
techniques suitable for this purpose, the most robust and
effective are based on the Krylov sub-space methods, such as
the matrix-Padè-via-Lanczos (MPVL) and the block Arnoldi
algorithms, largely used in the reduced-order modeling of
complex very large scale integration (VLSI) circuitry [2]–[4].

Krylov sub-space methods apply to state-space models of
linear systems and, for this reason, they are well-matched to the
finite-element method, which gives rise to a model of this type
[1], [5], [6]. On the contrary, integral-equation (IE) methods,
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which are the most effective in the analysis of planar circuits, do
not give rise to equations in the state-space form so that Krylov
sub-space methods can be applied only through adaptive proce-
dures [7], which partially reduce their efficiency.

In this paper, which presents in detail a theory outlined in [8],
we introduce a State-Space Integral-Equation (SS-IE) method
for the modeling of shielded planar circuits on multilayered sub-
strates, including semiconductors. Differently from standard IE
methods, the new procedure directly results into state equations,
thus permitting to exploit at best the advantages of the inte-
gral approach and of Krylov sub-space methods. Some prelim-
inary conference papers have been published [9]–[11], which
presented a similar method, but restricted to low-loss substrates
and lossless metallizations. With respect to the early ones, the
algorithm presented here has been modified in order to have
real rather than complex system matrices, thus allowing the use
of standard model-order reduction techniques. Furthermore, it
has been generalized in such a way as to allow for considering
lossy substrates and metallizations. With respect to [8], a more
accurate representation of the metallization losses has been in-
troduced, an approximate procedure useful in case of low-loss
substrates has been included, and the possibility of considering
thin-film resistors has been discussed.

Starting from the conventional formulation of the IE method
for the analysis of shielded planar circuits, Section II shows
how the original equations can be transformed into a state-space
model of the circuit. Section III introduces an approximate
model useful for speeding up the calculation in the case of
high-resistivity semiconductor layers. Section IV suggests how
the algorithm can be generalized in order to allow for including
thin-film resistors. Section V presents three examples and
Section VI draws conclusions.

II. THEORY

We consider a shielded planar circuit with ports, con-
sisting of thin metal elements, embedded in a layered medium
including both insulating and semiconducting layers (Fig. 1).
For simplicity, we assume that these elements are located at a
single “metallization level” outside the semiconducting layers.
As usual, we assume a “delta-gap voltage excitation” [12], [13].

The shadowed area shown in Fig. 2 represents the metal-
lization and includes the gaps where the exciting
voltages are applied. The excitation gives rise to
a surface current distributed in the metallization, and to a set
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Fig. 1. Shielded planar circuit on a multilayered substrate.

Fig. 2. Symbol definition. The region 
 includes the metallization (shadowed
area) and delta gaps (segments t ; t ; . . .).

of gap currents . The positive direction of the gap
voltages and currents is defined by the normals .
We have

(1)

Over the surface , the tangential electric field must satisfy
the boundary condition

(2)

where denotes a delta-function supported by the segment ,
and is the surface impedance of the metallization. On the other
hand, the electric field is related to the current density by the
integral

(3)

where the Green’s dyadic is represented as

(4)

In this expression, vectors are the normalized electric mode
vectors of the modes of the rectangular waveguide of sides
and (see Table I), and is the modal impedance seen from
the metallization level, looking in the layered rectangular cavity.

Depending on the mode ordering, the index corresponds to
some or mode. For each mode, is calculated
by considering the transverse equivalent circuit shown in Fig. 3,
where each line section corresponds to a layer and the imped-
ances and represent the surface impedances of the bottom
and top walls of the box, respectively. The propagation factor

and the characteristic impedance depend on the
layer and on the mode. Their expressions in terms of the Laplace
variable are given in Table I, where and are the conduc-
tivity and the relative permittivity of the th layer and

is the cutoff wavenumber of the mode. The expressions of
and have been obtained by replacing with in the usual
time–harmonic expressions. On substitution of (3) into (2), we
obtain an IE, whose solution yields the current density generated
by a given set of voltages. Substituting into (1), we then find
the relationship between the voltages and the currents, i.e., the
admittance matrix of the circuit. A deembedding procedure (not
discussed in this paper) should be applied to correct the results
for the effects of parasitics inherent in the “delta-gap” model of
the ports.

A. Discretization

The IE is solved by using the method of moments [14]. We ap-
proximate the current density in a finite-dimensional functional
space using the expression

(5)

where is a set of real basis functions defined on and
is a set of complex variables. Since, at zero frequency,

the current must be solenoidal, the space spanned by
must include a subspace of adequate dimensions, consisting of
solenoidal functions. Following the Galerkin’s procedure, the
IE is transformed into the matrix equation

(6)

where is the voltage vector, is the vector of the
variables , and the matrices , and are
defined as

(7)

(8)

where

(9)

(10)
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TABLE I
PROPAGATION FACTOR, CHARACTERISTIC IMPEDANCES, AND MODE VECTORS

Fig. 3. Equivalent circuit for the calculation of Z . The line sections
correspond to the layers and z is the metallization level.

On the other hand, from (1) and (5), we obtain

(11)

where is the current vector. Eliminating between (6)
and (11), we can find the currents as functions of voltages, i.e.,
the admittance matrix of the circuit.

B. Pole Expansion of

Matrix is a transcendental function of due to its depen-
dence on the modal and surface impedances. To put (6) into
the form of a state equation, we need the pole expansion of ,
which, in turn, requires the introduction of the pole expansions
of and .

The pole expansion of can be deduced from the general
theory presented in [15], applied to the simple case of isotropic
layers, characterized by the constants and , and assuming
that the metallization level is outside the semiconductors. In this
case, the expansion has the form

(12)

where and represent a real pole and its real residue,
and represent a complex pole pair

and their residues, the indexes and label the poles in the
order of their increasing distances from the origin, and is the
residue of the pole at the origin. In the particular case where the
metallization level is placed just at an insulator/semiconductor
interface, this pole does not exist . Otherwise it exists
only for TM modes, and is real positive.

In the time domain, complex poles correspond to damped os-
cillating modes of the equivalent circuit of Fig. 3, whereas real

Fig. 4. Typical pole pattern of Z for a TM mode. The accuracy of the
approximation (15) increases with increasing the value of the “accuracy factor”
� . A value � of approximately 2–3 is appropriate.

poles correspond to damped nonoscillating modes. All poles and
residues can be deduced by calculating the eigenmodes of the
equivalent circuit [9]. In all cases, we have an infinity of com-
plex poles (with a single cluster point at infinity) and a finite
number of real poles, as sketched in Fig. 4.

In the case of TM modes, it is found that, with increasing the
order of the mode, and from some order on, tends to a limit

that is equal to the number of the interfaces involving
at least one semiconducting layer. This result is illustrated in
Figs. 5 and 6, which represent the real poles for TM modes
versus the cutoff wavenumber in two examples of stratification.
The asymptotic values of are given by (see Appendix I)

(13)

In the case of Fig. 5 (low-conductivity layers), the number of
real poles is the same for all modes, whereas in the case of
Fig. 6 (high-conductivity layer), it decreases when increasing
the mode order. A different behavior is found for real poles of
TE modes: in fact, these poles either are totally absent or they
disappear from some order on. For both types of modes, is a
constant ( or zero) when the conductivity and/or the thick-
ness of semiconducting layers are below some limit (see Sec-
tion V), beyond which the D-shaped curves of Fig. 6 appear.

An appropriate pole expansion for the surface impedance of
the metallization is (see Appendix II)

(14)
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Fig. 5. Real poles versus TM-mode cutoff wavenumber (case of a low-loss
structure including dielectric and high-resistivity semiconductor layers). Layer
1 (air): t = 300 �m, Layer 2: t = 100 �m, � = 11, � = 10 S/mm.
Layer 3: t = 200 �m, � = 4, � = 0. Layer 4: t = 400 �m, � = 13,
� = 2 � 10 S/mm. Layer 5 (air): t = 500 �m.

Fig. 6. Real poles versus TM-mode cutoff wavenumber (case of a structure
including a low-resistivity substrate and an insulating layer). Layer 1: t =

100 �m, � = 11:76, � = 1 S/mm. Layer 2: t = 2 �m, � = 4, � = 0.
Layer 3 (air): t = 1 mm.

where

, , and representing the actual thickness, con-
ductivity, and magnetic permeability of the metallization,
respectively.

Introducing (12) and (14) into (7), we obtain the pole expan-
sion of the matrix . Evidently, all the matrix elements have the
same poles. More specifically, they have: i) an infinity of com-
plex poles, corresponding to all TE and TM oscillating modes
of the box; ii) an infinity of real poles deriving from (14); and
iii) a number of real poles . Should we consider an infinite
number of modes in the expansion (7), also the number of these
last poles would be infinite, and they would exhibit cluster
points, given by (13).

Assuming that an accurate modeling is only required in some
given “band of interest” ( , ), we can approximate
in some way the contribution of all poles far from the corre-
sponding portion of the imaginary axis (see Fig. 4). Considering
a circle of radius , sufficiently larger than , we can
then truncate the pole expansions (12) by retaining the poles lo-
cated inside and approximating the contribution of all other
poles by a power expansion around the origin, truncated to the
first order. Equation (12) is then replaced by the finite expansion

(15)

where denotes a summation including only the poles located
in , and and are real quantities, such that ap-
proximates the contribution from all poles outside . All coef-
ficients included in the expansion depend only on the box and
metallization level, and can be determined once for all, and used
for considering different metallization patterns embedded in the
same box. An efficient code for their calculation is described in
[9] and can be downloaded from the World Wide Web.1

The same criterion can be followed to truncate (14), which
can be replaced by the finite expansion (see Appendix II)

(16)

where

and is the number of poles of included in . It is easily
verified that

(17)

where is the skin depth at the frequency .
Let and denote the total number of complex pole

pairs and of real poles of the modal impedances included in ,
respectively. Due to (7), the pole-set of the matrix then con-
sists of complex pole pairs and of real poles. It
is important to note that, with increasing the mode order , the
complex poles of the impedances move toward infinity and
go outside the circle . Thus, in all cases, is finite (and rea-
sonably small), however large the number of terms included in
the summation (7) is. The same statement does not hold true for
real poles of the modal impedances because they move toward
the asymptotic values (13). If these values are placed inside the
circle (which is likely to happen in the case of high-resis-
tivity semiconductor layers), the number increases with in-
creasing the number of terms included in the summation, and
it can be very large. Finally, we note that with the thickness of
metallization normally used in monolithic microwave integrated
circuits (MMICs), is of the order of unity.

The poles and residues of the modal impedances are renamed
by using a single-index notation with used
for the complex poles and used for the
real ones. The renaming results into two mappings between the
single- and the double-index notations

such that: (18)

such that: (19)

1[Online]. Available: http://www.microwave.unipv.it/software
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Summing the two fractions in the last term of (15) and substi-
tuting (15) and (16) into (7), we can then write

(20)

where

(21)

(22)

(23)

(24)

(25)

(26)

Note that if the metallization level is placed at a semi-
conductor/insulator interface because all coefficients are zero
in this case.

C. State-Space Equations and Pole Expansion of the
Admittance Matrix

Introducing the auxiliary variables

(27)

(28)

(29)

(30)

and using the pole expansion of , (6) becomes

(31)

where the auxiliary variables are ordered in the complex vectors

and the other matrices are defined by (10) and (21)–(26). ,
, , are real square symmetric matrices; ,

, and are real rectangular matrices.
Matrix (if it differs from zero) is semidefinite positive

of rank , where is the dimension of the
solenoidal subspace spanned by the -dimensional basis

(see Appendix III). It can be expressed in the form of

the singular value decomposition (SVD) expansion [16], [17],
which, due to the symmetry and positive semidefiniteness, has
the form

(32)

where is the (diagonal) matrix of the singular values. Equation
(31) can then be modified by substituting

(33)

where

(34)

Starting from (27) and (28), it is easily verified that and
satisfy

(35)

(36)

Furthermore, from (29) and (30), we obtain

(37)

(38)

Equations (34)–(38) imply the matrix equations

(39)

(40)

(41)

(42)

(43)

(44)

where , ,
, denotes the identity matrix of

order and

It is noted that (43) and (44) imply (38) because is nonsin-
gular (see Appendix III).

Equations (31), (39)–(44), and (11) can be rewritten in the
form

(45)

(46)

where the matrices , and the vector are defined
at the bottom of the following page. and are real sym-
metric matrices independent of so that system (45) and (46)
represents the mathematical model of the circuit in the stan-
dard state-space form, with representing the state vector. The
model order, i.e., the total number of the state variables, is

The model is the basic result of the SS-IE method.
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In the particular case where the metallization level is placed at
a semiconductor/insulator interface (case ), the model is
still valid, with the elimination of the fifth row in the definition
of and and of the fifth row and column in the definition
of and .

From (45) and (46), we obtain

admittance matrix

(47)

Evidently, the admittance matrix defined above is symmetric
and satisfies the fundamental property .

As discussed in numerous papers (e.g., [5]), the inverse ma-
trix is easily obtained in the form of a pole expansion by using
the eigendecomposition , where is the
diagonal matrix of the eigenvalues and is the matrix of
the eigenvectors. The elements of the admittance matrix are ob-
tained in the form

(48)

which evidences that the eigenvalues are the poles of the admit-
tance matrix. Note that the pole expansion is an exact represen-
tation of the matrix defined in (47) so that the residues satisfy

and, furthermore, the poles and residues are either
real or complex, in conjugate pairs.

The number of poles is equal to the order of the SS-IE
model (45) and (46). Though it is much smaller than the typical
order of models obtained through finite methods [5], [6], it can
be large (e.g., thousands), especially due to the possible large
values of and . This makes the eigendecomposition of

impractical.
For this reason, the original model is approximated in the

band of interest by a reduced-order one. Some Krylov sub-space
algorithms, such as the MPVL or the block Arnoldi algorithms
[2], can be used, choosing the expansion point on the real pos-
itive semiaxis (we use ), in order to preserve the
property .

Krylov sub-space techniques are iterative processes that
improve the approximation by subsequent enlargements of the
model order, beginning from a value as low as the number
of the ports. The iterative process is stopped when the circuit
response (deduced from the pole expansion) converges in the
band of interest. The final order of the model depends on the
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nature of the component and the band of interest. Also, in cases
of high-order filters and very large bands of interest, it does not
exceed some tens. The eigendecomposition of matrices of such
an order does not give rise to any computing problem.

III. HIGH-RESISTIVITY LAYERS

MMICs make use of high-resistivity layers with typical con-
ductivity smaller than 0.1 S/m and thickness smaller than a few
hundreds of micrometers. In this case, it is found that real poles
exist for TM modes only, that their residues are positive,
and that their number is equal to the number of the
asymptotic values (13). Typically, these values are smaller than

rad/s, corresponding to frequencies well below the mi-
crowave range. For this reason, the poles crowd
together near to the origin, at distances much smaller than the
radius of the circle .

Due to the mapping (19), indexes always correspond to
TM modes, and each TM mode correspond to of these
indexes. For this reason, we have

(49)

where is the number of TM modes considered in the sum-
mation (7). Since may easily be of the order of a few thou-
sands, can be very large, giving the largest contribution to
the order . Though the model-order reduction permits to
also handle cases of thousands of state variables without partic-
ular problems, the rapidity of the reduction process is affected
by the large dimension of the involved matrices. In this section,
we introduce an approximation that eliminates this drawback
without loosing accuracy in the microwave range.

Due to (23) and (41) and observing that, in the present case,
we have (because ), we can write

(50)

where (assuming )

In this expression, is the matrix of the quan-
tities pertaining to the TM modes, is the
matrix of the quantities , is the same matrix defined
in the preceding section, and

It is stressed that, in the present case, the entries of
also pertain to TM modes only, and that each row of ap-
pears times as a row of in positions depending on the
mapping (19). For this reason, the rank of is equal to the
rank of , which, in turn, is equal to the rank of (see
Appendix III). We can then represent by the SVD expansion
[16], [17] as follows:

where , , and
is the diagonal matrix of the singular values of . We can then
rewrite (50) in the form

(51)

where

(52)

The nonzero entries of , i.e., the real poles of that depend
on the losses in the semiconducting layers, are located very near
to the origin. If we are not interested in the range of low fre-
quencies, we can then assume that satisfies the approximate
equation (see Appendix IV)

for
(53)

where

(54)
By substituting (51) into (31) and replacing (41) and (42) with
(53), we still obtain the state-space model (45) and (46) with the
following new definitions of , , , and :

Since is a -dimensional vector, the order of the approximate
model is
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The order of the approximate model is then much smaller than
the order of the original one.

The approximate model is still valid in the case ; the
only modification consisting in defining , ,
and .

IV. INCLUSION OF THIN-FILM RESISTORS

The theory discussed in the previous section can be slightly
modified to allow for considering metallizations with a piece-
wise constant (rather than a constant) surface impedance.
This permits to consider thin-film resistors connected to
the high-conductivity metallization. The modification starts
from (7), where the quantity must be replaced by

. In the subdomain of corresponding to
resistors, is simply represented by a resistance, independent
of . In the subdomains corresponding to the high-conductivity
metallization, is still represented by (16). Though the gener-
alization creates no significant conceptual problem, it requires
a more complicate definition of matrices related to metal losses.
We limited the presentation of the theory to the simplest case
of a uniform metallization to avoid overwhelming the basic
concepts with a cumbersome symbolism.

V. EXAMPLES

In this section, we compare the results of the SS-IE algo-
rithm, implemented in a FORTRAN code, with the results ob-
tained by a commercial code based on the standard IE algorithm
(AWR EMSight) with the deembedding procedure disabled. As
in EMSight, we used rectangular rooftops as basis functions
[18] in such a way as to make the comparison independent of
the choice of these functions. Note that rooftops permit to syn-
thesize solenoidal currents [10], thus fulfilling the requirement
discussed in Section II-A. The model-order reduction has been
performed by using an MPVL algorithm. After determining the
pole expansion of the -matrix, we calculated the scattering
parameters by using well-known transformation formulas. The
frequency sweep requires a negligible time. All reported times
refer to a standard PC with a 2-GHz Pentium-IV processor and
a 512-MB RAM. All times are reported in the form of the sum
of two contributions; the first representing the time required for
the determination of all the coefficients involved in the represen-
tation the modal impedances (15) and the second representing
the time required for the calculation of the system matrices, for
the model-order reduction and for the eigendecomposition of

.
The first example (Fig. 7) refers to a section (1.2 mm) of a

microstrip line on a medium-conductivity Si–SiO substrate,
analyzed in the frequency range of 0–20 GHz. The width of
the microstrip was chosen to give a characteristic impedance
close to 50 at 10 GHz. Due to the conductivity of the sub-
strate, this structure exhibits a slow-wave effect at low frequen-
cies [19]. In the calculation, we deduced the attenuation and
the “slowing factor” from the amplitude and phase of .
In the calculation, we used rooftops (uniform mesh,
100 m 18 m) and represented the field with an expansion
involving 1280 TE modes and 1200 TM modes. The maximum
frequency of interest was GHz and we chose .
With this choice, we found , ,

Fig. 7. Slowing factor and attenuation in a microstrip line on a
medium-resistivity Si–SiO substrate showing the slow-wave effect at
low frequencies. All dimensions are in micrometers (figure not to scale). The
stratification data are � = 11:76, � = 10 S/m, � = 3:9, and � = 0. The
conductivity of the strip and the ground plane was 10 S/m.

(no complex pole pair were found inside the circle so that
, , , , , and were missing in the calculation).

The original model order was , which was re-
duced to ten by the MPVL algorithm. The results obtained by the
SS-IE and the IE methods are in good agreement (the slowing
factor and the attenuation agree within 2% and 0.03 dB/mm, re-
spectively). With our method, the computing time was approx-
imately s, whereas the time required by EMSight to
calculate the 32 frequency samples reported in the figure was
approximately 12 (with the same rooftops). It is noted that, in
this example, the accelerated procedure described in Section III
could not be used since the value of the largest real pole (of the
order of Grad/s) was comparable with the radius of the
circle .

The structure of Fig. 7 was also used to investigate the
behavior of the SS-IE algorithm when the conductivity of
the semiconductor is increased, beginning from the value of
10 S/m considered before. At first, the number of real
poles inside the circle decreased, going to zero when the
conductivity reached a value for which the asymptotic value
(13) exceeded the radius of . Disappearance of real poles
took place for a conductivity of approximately 50 S/m. Real
poles appeared again, for lower order TE and TM modes only,
for a conductivity of the order of

where has the usual meaning and , are the permittivity
and thickness of the semiconductor, respectively. It is noted that
this value of conductivity corresponds to the appearance of the
D-shaped curves in the diagram versus (see Fig. 6). The
number reached again the order of 1000 for a conductivity
of the order of 10 S/m, a very large value, typically encountered
only in RF integrated circuits (RFICs), rather than in MMICs.
Only when such a value was largely exceeded, the number of
real poles increased up to a point that makes the SS-IE algo-
rithm less efficient. Though these results refer to a particular
structure, a similar behavior has also been observed for different
structures, e.g., in cases where the semiconducting layer does
not contact the ground plane.
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Fig. 8. Coupled-line 30-GHz bandpass filter on an Si–SiO high-resistivity
substrate, modeled in a very large band, including the first spurious passband.
All dimensions are in micrometers (drawing not to scale). The width of all strips
is 81 �m). The stratification data are � = 11:76, � = 1=30 S/m, � = 3:9,
and � = 0. The conductivity of the strip and the ground plane was 10 S/m.

The second example (Fig. 8) concerns a 30-GHz coupled-line
bandpass filter on a high-resistivity Si–SiO substrate. This
example was already considered in [8], where we assumed

for the sake of simplicity. It is reconsidered here
to see the effect of the more accurate representation (16). We
used rooftops (uniform mesh, 146.66 m 27 m)
and represented the field with an expansion involving 2805 TE
modes and 2700 TM modes. The maximum frequency of interest
was GHz (in order to include in the analysis the first
spurious passband of the filter) and we chose . With this
choice, we found , , and and the
original model-order was . The MPVL algorithm
reduced the order to 80. The computing time was (5 25) s, to
be compared with 150 s required by EMSight to compute (with
the same rooftops) the 194 frequency samples reported in the
figure. An excellent agreement between the SS-IE and IE results
is observed (in the passband, the insertion and return loss agree
within 0.4 and 0.9 dB, respectively). The time saving became
even more important if the accelerated procedure of Section III
is used, as permitted due to the high resistivity of the substrate.
With this procedure, we had , which was reduced
to 60 by the MPVL algorithm. The computing time became
(5 12) s, showing the advantage of the accelerated procedure.
The results obtained with both procedures are indistinguishable

Fig. 9. 40-GHz Wilkinson power divider on a high-resistivity Si–SiO
substrate (� = 11:76, � = 1=30 S/m, � = 3:9, � = 0).

apart from fine details at very low frequencies, not appreciable
in Fig. 8. With respect to the result reported in [8, Fig. 5], an
increase of insertion loss of approximately 3 dB in the passband
and a significant deformation of the response is observed.
This result confirms the importance of using an -dependent
rather than a constant value of the surface impedance of the
metallization.

The last example refers to a symmetric Wilkinson power
divider on a high-resistivity Si–SiO substrate (Fig. 9), which
includes a distributed thin-film resistor. In the analysis of
this structure, we considered a piecewise constant surface
impedance (see Section IV), assuming a lossless metallization
for the microstrip lines and a resistance of 33.33 per square
for the resistor. We used rooftops and represented
the field with an expansion involving 7170 TE modes and
7000 TM modes. The maximum frequency of interest was

GHz and we chose . With this choice, we
found and . Note that, in this example, we
had due to the assumption of an infinite conductivity
in the strip lines. Also in this case, we used the accelerated
procedure of Section III, which resulted in the model-order

reduced to 30 after using the MPVL algorithm.
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Again, a very good agreement between the SS-IE and IE results
is observed (typically within 0.15 dB). With our method, the
computing time was approximately (12 11) s, whereas EM-
Sight required approximately 70 s to compute the 26 frequency
samples reported in the figure. In this example, nonuniform
meshes were used in either simulations. Though different
meshing criteria produced slightly different meshes, in both
case, the minimum mesh size was 22 m 22 m.

As in most commercial codes based on the IE approach, also
with the SS-IE algorithm, it is possible to reuse previous re-
sults to save computing time when repeating calculations with
the same layered box and different geometries of the metalliza-
tion. In fact, the evaluation of the coefficients of the pole ex-
pansions (15) can be performed once for all, thus obtaining a
time saving of approximately 30%–50%, as shown by the times
quoted above.

VI. CONCLUSIONS

It has been shown how the IE method can be modified to
give place to a state-space model of a shielded planar circuit.
The relatively small order of the model permits to perform the
model-order reduction in very short times by using a Krylov
sub-space technique and avoiding the interpolation procedures
used in other -domain IE methods. Some examples demon-
strated the accuracy of the method and the time saving obtain-
able in the calculation of frequency response in very large bands.
Apart from the time saving, the SS-IE method has the advantage
of generating in a reliable way mathematical models, which can
be very useful for representing arbitrarily shaped planar struc-
tures in the design of complex integrated circuits, carried out in
a network-oriented simulation environment.

Numerical experiments demonstrated that the efficiency of
the SS-IE method is maintained in a very large range of con-
ductivity of the semiconducting layers, including all values of
practical interest.

Though the theory has been reported for the simple case of
a single metallization level, it can be extended to circuits with
multiple metallizations and/or vias. The generalization requires
the use of a representation of the electric field involving a nine-
component dyadic . The pole expansion of
this dyadic can also be obtained from the general results re-
ported in [15], and its use leads to the state-space formulation
of the problem, following the same lines discussed here. Some
complication could only derive from the representation of the
surface impedance of the metal elements.

APPENDIX I
ASYMPTOTIC VALUES OF

The asymptotic values of the real poles are nonzero and finite.
They correspond to damping factors of damped nonoscillating
modes of the equivalent circuit of Fig. 3, considered in the limit
of very large values of . They can be found as the nonzero
and finite “natural values” of for which, in the absence of
external excitation, waves can exist in the equivalent circuit, in
the limiting case .

With increasing the cutoff wavenumber and for finite values
of , we have (see Table I)

for TM modes

for TE modes.
(55)

Since is real and very large, the modes we are considering
consist of strongly attenuated evanescent waves. As a conse-
quence, these modes, when they exist, must be localized in the
close proximity and on both sides of interfaces between the
layers. They correspond to values of for which the admittances
seen on both sides of the interfaces are opposite. On the other
hand, these admittances correspond to the characteristic admit-
tances of the adjacent layers since the strong attenuation makes
the effect of all other layers negligible. Therefore, the desired
values of are solutions of the equations

By substituting (55), we found that no solution exists in the case
of TE modes, whereas, in the case of TM modes, we have a
nonzero solution for each interface where , i.e.,
for each interface involving one semiconducting layer, at least.
The solution is

which corresponds to the asymptotic values (13).

APPENDIX II
POLE EXPANSION OF

An expression of appropriate to microstrip circuits is [20]

(56)

This expression is transformed into (14) by using the expansion
(see [21, eq. 1.421.4])

The convergence of (14) is accelerated by extracting from the
series its value for , i.e.,

Thanks to the accelerated convergence, the series is truncated
by considering the contribution of the only poles included in
the circle . Thus, we obtain (16), where

From this condition, we obtain (17).
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APPENDIX III
SOME PROPERTIES OF , , AND

Due to (23), a quadratic form depending on can be written
as

where the summation over the modal index is limited to TM
modes only since for TE modes. On the other hand, due
to (9), we have

(57)

The integral can be zero for any only if is zero or if
(electric TM-mode vectors are orthogonal to trans-

verse solenoidal vectors). Quanity is then zero only if all
-coefficients are zero or if they correspond to solenoidal cur-

rents. In other cases, is positive so that matrix is semidef-
inite positive, and its null space consists of the vectors that
represent solenoidal currents. The dimension of this space is
equal to the dimension of the solenoidal subspace spanned
by the -dimensional basis . The rank of is then

.
Now let us consider the quadratic form

Due to (10) and (5), this expression is easily transformed into

which shows that is positive for all . Consequently,
is nonsingular and positive definite.

Finally, we observe that (57) represents the th raw of the
vector , representing the matrix of coefficients
pertaining to TM modes included in the field representation (3)
and (4). For this reason, the null space of is the same as
the null space of so that the rank of is the same as the rank

of .

APPENDIX IV
APPROXIMATIONS FOR THE CASE OF HIGH-RESISTIVITY LAYERS

If , the entries of can be regarded
as infinitesimal quantities, and we can write

Using this approximation and introducing the matrices and
, defined in (54), from (52), we obtain

Also, can be regarded as an infinitesimal matrix. Again
making the same kind of approximation, we can then write

By substituting in the preceding equation, we then obtain (53).
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